Description: This tutorial teaches students everything they need to get started with Python programming for the fast-growing field of data analysis. Daniel Chen tightly links each new concept with easy-to-apply, relevant examples from modern data analysis. Unlike other beginner's books, this guide helps today's newcomers learn both Python and its popular Pandas data science toolset in the context of tasks they'll really want to perform. Following the proven Software Carpentry approach to teaching programming, Chen introduces each concept with a simple motivating example, slowly offering deeper insights and expanding your ability to handle concrete tasks. Daniel Chen is a graduate student in the interdisciplinary PhD program in Genetics, Bioinformatics & Computational Biology (GBCB) at Virginia Tech. He is involved with Software Carpentry as an instructor and lesson maintainer. He completed his master's degree in public health at Columbia University Mailman School of Public Health in Epidemiology, and currently works at the Social and Decision Analytics Laboratory under the Biocomplexity Institute of Virginia Tech where he is working with data to inform policy decision-making. He is the author of Pandas for Everyone and Pandas Data Analysis with Python Fundamentals LiveLessons. Foreword xix Preface xxi Acknowledgments xxvii About the Author xxxi Part I: Introduction 1 Chapter 1: Pandas DataFrame Basics 3 1.1 Introduction 3 1.2 Loading Your First Data Set 4 1.3 Looking at Columns, Rows, and Cells 7 1.4 Grouped and Aggregated Calculations 18 1.5 Basic Plot 23 1.6 Conclusion 24 Chapter 2: Pandas Data Structures 25 2.1 Introduction 25 2.2 Creating Your Own Data 26 2.3 The Series 28 2.4 The DataFrame 36 2.5 Making Changes to Series and DataFrames 38 2.6 Exporting and Importing Data 43 2.7 Conclusion 47 Chapter 3: Introduction to Plotting 49 3.1 Introduction 49 3.2 Matplotlib 51 3.3 Statistical Graphics Using matplotlib 56 3.4 Seaborn 61 3.5 Pandas Objects 83 3.6 Seaborn Themes and Styles 86 3.7 Conclusion 90 Part II: Data Manipulation 91 Chapter 4: Data Assembly 93 4.1 Introduction 93 4.2 Tidy Data 93 4.3 Concatenation 94 4.4 Merging Multiple Data Sets 102 4.5 Conclusion 107 Chapter 5: Missing Data 109 5.1 Introduction 109 5.2 What Is a NaN Value? 109 5.3 Where Do Missing Values Come From? 111 5.4 Working with Missing Data 116 5.5 Conclusion 121 Chapter 6: Tidy Data 123 6.1 Introduction 123 6.2 Columns Contain Values, Not Variables 124 6.3 Columns Contain Multiple Variables 128 6.4 Variables in Both Rows and Columns 133 6.5 Multiple Observational Units in a Table (Normalization) 134 6.6 Observational Units Across Multiple Tables 137 6.7 Conclusion 141 Part III: Data Munging 143 Chapter 7: Data Types 145 7.1 Introduction 145 7.2 Data Types 145 7.3 Converting Types 146 7.4 Categorical Data 152 7.5 Conclusion 153 Chapter 8: Strings and Text Data 155 8.1 Introduction 155 8.2 Strings 155 8.3 String Methods 158 8.4 More String Methods 160 8.5 String Formatting 161 8.6 Regular Expressions (RegEx) 164 8.7 The regex Library 170 8.8 Conclusion 170 Chapter 9: Apply 171 9.1 Introduction 171 9.2 Functions 171 9.3 Apply (Basics) 172 9.4 Apply (More Advanced) 177 9.5 Vectorized Functions 182 9.6 Lambda Functions 185 9.7 Conclusion 187 Chapter 10: Groupby Operations: Split-Apply-Combine 189 10.1 Introduction 189 10.2 Aggregate 190 10.3 Transform 197 10.4 Filter 201 10.5 The .groupby.DataFrameGroupBy Object 202 10.6 Working with a MultiIndex 207 10.7 Conclusion 211 Chapter 11: The datetime Data Type 213 11.1 Introduction 213 11.2 Python's datetime Object 213 11.3 Converting to datetime 214 11.4 Loading Data That Include Dates 217 11.5 Extracting Date Components 217 11.6 Date Calculations and Timedeltas 220 11.7 Datetime Methods 221 11.8 Getting Stock Data 224 11.9 Subsetting Data Based on Dates 225 11.10 Date Ranges 227 11.11 Shifting Values 230 11.12 Resampling 237 11.13 Time Zones 238 11.14 Conclusion 240 Part IV: Data Modeling 241 Chapter 12: Linear Models 243 12.1 Introduction 243 12.2 Simple Linear Regression 243 12.3 Multiple Regression 247 12.4 Keeping Index Labels From sklearn 251 12.5 Conclusion 252 Chapter 13: Generalized Linear Models 253 13.1 Introduction 253 13.2 Logistic Regression 253 13.3 Poisson Regression 257 13.4 More Generalized Linear Models 260 13.5 Survival Analysis 260 13.6 Conclusion 264 Chapter 14: Model Diagnostics 265 14.1 Introduction 265 14.2 Residuals 265 14.3 Comparing Multiple Models 270 14.4 k-Fold Cross-Validation 275 14.5 Conclusion 278 Chapter 15: Regularization 279 15.1 Introduction 279 15.2 Why Regularize? 279 15.3 LASSO Regression 281 15.4 Ridge Regression 283 15.5 Elastic Net 285 15.6 Cross-Validation 287 15.7 Conclusion 289 Chapter 16: Clustering 291 16.1 Introduction 291 16.2 k-Means 291 16.3 Hierarchical Clustering 297 16.4 Conclusion 301 Part V: Conclusion 303 Chapter 17: Life Outside of Pandas 305 17.1 The (Scientific) Computing Stack 305 17.2 Performance 306 17.3 Going Bigger and Faster 307 Chapter 18: Toward a Self-Directed Learner 309 18.1 It's Dangerous to Go Alone! 309 18.2 Local Meetups 309 18.3 Conferences 309 18.4 The Internet 310 18.5 Podcasts 310 18.6 Conclusion 311 Part VI: Appendixes 313 Appendix A: Installation 315 A.1 Installing Anaconda 315 A.2 Uninstall Anaconda 316 Appendix B: Command Line 317 B.1 Installation 317 B.2 Basics 318 Appendix C: Project Templates 319 Appendix D: Using Python 321 D.1 Command Line and Text Editor 321 D.2 Python and IPython 322 D.3 Jupyter 322 D.4 Integrated Development Environments (IDEs) 322 Appendix E: Working Directories 325 Appendix F: Environments 327 Appendix G: Install Packages 329 G.1 Updating Packages 330 Appendix H: Importing Libraries 331 Appendix I: Lists 333 Appendix J: Tuples 335 Appendix K: Dictionaries 337 Appendix L: Slicing Values 339 Appendix M: Loops 341 Appendix N: Comprehensions 343 Appendix O: Functions 345 O.1 Default Parameters 347 O.2 Arbitrary Parameters 347 Appendix P: Ranges and Generators 349 Appendix Q: Multiple Assignment 351 Appendix R: numpy ndarray 353 Appendix S: Classes 355 Appendix T: Odo: The Shapeshifter 357 Index 359
Price: 72.49 AUD
Location: Hillsdale, NSW
End Time: 2024-10-04T11:37:05.000Z
Shipping Cost: 33.63 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 60 Days
EAN: 9780134546933
UPC: 9780134546933
ISBN: 9780134546933
MPN: N/A
Item Height: 2 cm
Item Length: 22.9 cm
Item Weight: 0.63 kg
Item Width: 17.5 cm
Author: Daniel Chen
Publication Name: Pandas for Everyone: Python Data Analysis
Format: Paperback
Language: English
Publisher: Pearson Education (Us)
Subject: Computer Science
Publication Year: 2018
Type: Textbook
Number of Pages: 416 Pages